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Abstract
The role of linearity in the definition of entropy is examined. While discussions
of entropy often treat extensivity as one of its fundamental properties, the
extensivity of entropy is not axiomatic in thermodynamics. It is shown that
systems in which entropy is an extensive quantity are systems in which a entropy
obeys a generalized principle of linear superposition.

PACS number: 05.70.-a

The role of extensivity (this can be thought of as linearity in joining sub-components) in
complex compound systems is not axiomatic, as some have supposed [1–3]. This perception
has led to controversy as the macrodynamics of physical systems such as black holes has
been investigated. An article by Maddox [4] dealing with the question of whether black
hole thermodynamics obeys the extensive property has caused us to re-examine the question
of whether or not the extensivity of entropy is an intrinsic principle of thermodynamics. As
Maddox states ‘Everybody who knows about entropy knows that it is an extensive property. . . ’.
In common with the majority of physicists, we were taught that entropy, like mass is extensive.
Thus, it is not surprising that the idea that entropy may not always be extensive is resisted
by many physicists. (Note, Tsallis [5] has proposed a generalization of entropy so that it
is inherently non-extensive. This is not what we are discussing, though there is a role for
generalized superposition in a discussion of Tsallis entropy.) It is this proposition and its
wider consequences that we discuss herein.

Entropy was defined phenomenologically by Clausius as the integral of dQ

T
over a reversible

path. Reif [3] argues that since the heat absorbed dQ is extensive, then entropy is extensive
as a consequence. Jaynes [6] has pointed out that the Clausius definition says nothing about
extensivity since the size of the system does not vary over the integration path. The extensivity
of entropy is an additional condition, imposed separately.
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If extensivity is not contained in the definition of entropy, are there situations where
entropy is not an extensive quantity? Non-extensive entropies can be found in a variety of other
situations. Systems subjected to long-range forces are found to have non-extensive entropies
if the potential energies associated with these forces are not negligible [7]. The Coulomb
force gives rise to non-extensive entropies for aggregates of charged particles carrying a net
charge [8]. Gravity causes non-extensive entropies in astrophysical situations. A common
example of a system with a non-extensive entropy is a column of liquid in which gravity has
induced a density gradient. Entropy is also non-extensive in small thermodynamic systems
where edge effects are important [9]. This catalog of systems with non-extensive entropies is
representative rather than exhaustive. We conclude that while entropy is extensive in many
situations, extensivity is not a fundamental property of entropy. Now, having discussed a variety
of sources that have demonstrated that entropic extensivity cannot be one of the fundamental
axioms of thermodynamics, we explore the meaning of extensivity and gain insight into when
it is useful.

Insight into the usefulness of extensivity can be developed by relating it to the basic results
of the theory of generalized linear systems. Consider a system with inputs xi(n), scalars ci and
a system transform T (). This system will be linear provided the system obeys the principle of
superposition (+ means ordinary addition)

T [x1(n) + x2(n)] = T [x1(n)] + T [x2(n)] (1)

and scalar multiplication ·
T [c · x(n)] = c T [x(n)] . (2)

In order to generalize what is meant by linear systems to other non-linear systems with a
transform H(), Oppenheim [10] proposed that the summation sign must be replaced with two
different symbols: a rule for combining inputs by �, and a different rule for combining outputs
by using the symbol ⊕. We then write the generalized superposition principle for such a system
as

H [x1(n) � x2(n)] = H [x1(n)] ⊕ H [x2(n)] (3)

which is the generalization of (1). A similar condition can be defined for scalar multiplication
by a constant c,

H [c ⊗ x(n)] = c ◦ H [x(n)] (4)

where ⊗ replaces the input scalar multiplication and ◦ replaces the output scalar multiplication.
(Note that this notation is slightly in variance with the literature [11].) Systems that have inputs
and outputs that satisfy both (3) and (4) are referred to as homomorphic systems since they can
be represented as algebraically linear (homomorphic) mappings between the input and output
signal spaces. (Note, this formalized view of homomorphic transformations can be relevant in
a number of other physical theories including as quantum mechanics.)

One would like to know if a given nonlinear combination of functions can be interpreted
as obeying a generalized superposition principle. To do this, one must be able to determine
if the nonlinear combination of functions shown in figure 1 can be separated into a linear
combination by application of a separator function S. For a system defined as

x(n) = [x1(n)] · [x2(n)] (5)

the separator function for multiplication is the logarithm, so that

log [x1(n)] · [x2(n)] = log [x1(n)] + log [x2(n)] (6)

and we have the appearance of superposition. Most nonlinear functions N(x, y) do not separate
in a manner that a superposition principle holds; e.g. a separator function S does not exist such
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Figure 1. Nonlinear combination of two signals (top) and separator function and
separands (bottom).
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Figure 2. Flow chart of the mathematical details for determining if the rule for combining systems
can be deconstructed so that a valid separator function S can be found (based on [12]).

that S[N(x, y)] = A(x) + B(y). It is a non-trivial exercise to find whether other rules for
combining of systems have separator functions. The mathematical details for determining if
the rule for combining systems can be deconstruct so that a valid separator function S can be
found are shown in the flowchart in figure 2 which is based on [12].

When we say that entropy or any other physical function is extensive, we are saying
that it obeys a generalized superposition principle. Thus, generalized superposition provides
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an interpretation of the extensivity property of entropy when it exists. For example,
subcomponents of a system are combined so that the statistical weight of the combined system
is the product of the statistical weights of the individual components, we can cast this into the
formalism of generalized superposition. By using the generalized superposition expression,
we see that if the system transform is the natural logarithm ln, �, and ⊕ represent addition
and multiplication respectively, then,

ln �1�2 = ln �1 + ln �2 (7)

and we see that the Boltzmann definition of entropy enables the introduction of a quantity
that is additive over sub-systems. Thus, we now see the role played by extensivity more
clearly. In fact, generalized superposition can be used as a guiding principle to look for
extensive variables in a generalized setting [13,14] of trying to determine the thermodynamics
of complex systems. More general types of entropy-like variables can be defined using a form
of generalized superposition4.

The principle of linear superposition plays a major role in the analysis of wave fields,
we are accustomed to its failure when we analyze finite amplitude waves and in the high
field case. We contend that the extensivity of entropy should be viewed similarly. Entropy is
approximately extensive in many situations, and we should continue to exploit this property
when it is convenient. Given the rule for combining subsystems into the whole is nonlinear,
the principle of generalized superposition allows us to look for a rule that gives the appearance
of linearity and hence extensivity. Linearity on a macroscopic scale gives us a generalized
thermodynamics of complex systems. However, this need not be the case for entropy since it
is known that there are a number of situations where entropy is not extensive. We should cease
to consider extensivity as one of the axioms of thermodynamics, and should instead consider
it as derivative of situations in which a principle of generalized superposition can be found.

Acknowledgments

The second author wishes to thank members of the Washington Evolutionary Systems Society
(WESS) and its member (George Farre) who encouraged part of this research. Thanks to Andy
Vogt in particular who listened to and provided input to versions of this paper. Also he wishes
to thank the Naval Surface Warfare Center Surface Launched Weapon’s Technology Program
manager (Danny Brunson) for the support of the signal processing work that led to this paper.

References

[1] Callen H B 1960 Thermodynamics 1st edn (New York: Wiley)
[2] Callen H B 1985 Thermodynamics and an Introduction to Thermostatics 2nd edn (New York: Wiley)
[3] Reif F 1965 Statistical and Thermal Physics 1st edn (New York: McGraw-Hill)
[4] Maddox J 1993 Nature 365 103
[5] Tsallis C 1988 J. Stat. Phys. 52 479

4 It is our hypothesis that part of the phenomena of emergence is due to counting functions that enumerate the states
that obey this generalized form of superposition or a form of linearization This need not be strictly linear either, (so
we call it Stirling linear) as is illustrated by attempting to linearize a counting function such as the gamma function
(n!). While ln(n!) is not linear, it is approximately so for a physical system with a number of components. For
all practical purposes ln((n + m)!) ≈ n ln(n) + m ln(m) ≈ ln(n!) + ln(m!), so n! has been linearized with respect
to the logarithm. The difference between approximately linear and linear is a point that is not emphasized as the
gamma function illustrates. Delineated linear in the sense of Stirling would be a step in clarifying this issues of what
entropy and complexity really are in a broader macrodynamics. One could then argue a non-physical form of entropy
exists only a linearization (Stirling) principle exists and use this to formulate an axiomatic basis for an underlying
‘thermodynamics’.



Is extensivity a fundamental property of entropy? 7737

[6] Jaynes E T 1992 Maximum Entropy and Bayesian Methods ed C R Smith, G J Erickson and P O Neudorfer
(Dordrecht: Kluwer)

[7] Landsberg P T 1978 Thermodynamics and Statistical Mechanics (New York: Wiley)
[8] Robertson H S 1993 Statistical Thermophysics (Englewood Cliffs, NJ: Prentice-Hall)
[9] Hill T L 1962 J. Chem. Phys. 36 3182

[10] Oppenheim A V 1967 Inf. Control 11 528
[11] Oppenheim A V and Schafer R W 1975 Digital Signal Processing (Englewood Cliffs, NJ: Prentice-Hall)
[12] Tretiak O J and Eisenstein B A 1976 IEEE Trans. Acoust. Speech Signal Process. 24
[13] Gray J E 1994 Advances in Synergetics: System Research on Emergence vol 1, ed G E Lasker and G L Farre

(The International Institute for Advanced Studies in Systems Research and Cybernetics)
[14] Gray J E 1996 Actes du Symp. ECHO (France, August 1996) ed A Ehresmann, G L Farre and J Vanbremeersch

Amiens pp 21–3


